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INTRODUCTION 

According to Finlayson and Scriven1 It is not variational notation or 

even the concept of a varied path which is the key criterion of a true 

variational 'principle', but rather the existence of a functional which when 

varied and set to zero, generates the governing equations and constraints for 

a given class of problems.  In this sense, certain fundamental principles of 

mechanics such as d'Alembert's Principle do not truly qualify as variational 

principles.  That is to say, these mechanical principles or 'laws' cannot be 

posed as central problems of the calculus of variations.  On the other hand 

there are others, such as Hamilton's principle which do qualify as true 

variational principles.  Yet it is d'Alembert's Principle which forms a basis 

for all analytical mechanics2 and it follows, therefore, that the vanishing of 

the first variation of some functional is not a necessary condition for the 

scalar formulation of any mechanics problem - however elegant or convenient 

this may be. 

Whether a true variational principle or a more fundamental variational 

statement is used to obtain a numerical solution to a dynamics problem, an 

important argument is that well established laws such as d'Alembert's 

Principle or true principles such as Hamilton's, are physically based and 

avoid the arbitrariness inherent in general weighted residual methods and 

contrived variational principles.  Only variational principles which are also 

maximum or minimum principles appear to offer any advantage for obtaining 

finlayson, B. A. and Scriven, L. E., "On the Search for Variational 
Principles," Int. J. Heat Mass Transfer, Vol. 10, 1967, p. 799-821. 

2Lanczos, C, The Variational Principles of Mechanics, 3rd Edition, University 

of Toronto Press, 1966, pp. 70-72. 



approximate solutions - mainly through their ability to provide bounds on the 

variatlonal integral.  Even then the system treated must be positive-definite 

and the upper and lower bounds are often too far apart to be of practical 

value.  In brief, there seems to be little point in contriving a variational 

principle in preference to a variational law of mechanics despite the more 

primitive status of the latter.  Indeed the many solutions to initial value 

dynamics problems achieved by C. Bailey^ by applying the Ritz  method to 

Hamilton's 'law of varying action' demonstrate the usefulness of variational 

formulations not qualifying as 'principles'.  Thus motivated, the work herein 

explains the numerical difficulties encountered in attempting to generalize 

Bailey's formulations according to the method of finite elements. 

FINITE ELEMENTS IN TIME 

The many solutions achieved by C. Bailey were generated by the Ritz 

method^ using a power series approximation in which globally defined poly- 

nomials are the basis functions.  Ultimately the length of interval over which 

solutions may be generated as well as the detail to be provided in any subin- 

terval will be limited by the degree of polynomial used as a basis.  The pit- 

falls of using higher powered polynomials are well documented^ and partially 

account for the use of locally (piecewise) defined basis functions (finite 

elements) to solve problems in many branches of mathematical physics.  The 

3Bailey, C. D., "The Method of Ritz Applied to the Equation of Hamilton," 
Computer Methods in Applied Mechanics and Engineering, 7, 1976, pp. 235-247. 
^Kantorovich, L. V., and Krylor, V. I., Approximate Methods of Higher 
Analysis, Interscience Publishers, Inc., 1964, pp. 258-303. 
^Conte, S. D., and de Boor, C, Elementary Numerical Analysis:  An Algorithmic 
Approach, 2nd Edition, McGraw Hill, 1972, pp. 231-233. 



extraordinary accuracy and simplicity of procedure attained by Bailey, 

however, is not to be understated. 

Apart from avoiding the problems which can arise when higher powered 

polynomials are employed as basis functions, finite element formulations have 

other advantages when used to solve problems in continuum mechanics.  Even 

though the principal motivation for their use has been the need to handle com- 

plicated boundary shapes (non-existent in the time domain) finite elements are 

also well suited to handle sudden changes in load functions, extending the in- 

terval of solution indefinitely without restart, and providing great detail to 

the solution in any subinterval.  Thus despite the reservations expressed by 

Zienkowicz," the extension of the finite element method to the solution of 

transient field problems is well motivated and was first reported by Argyris 

and Sharpf^ and later by Fried.^ 

Both of these works attempt to use Hamilton's principle as a starting 

point for the finite element formulation of initial value problems.  As will 

be pointed out in the following section, this cannot be accomplished without 

some logical inconsistency when bringing the initial data into the formula- 

tion.  In the sequel it will be shown that the use of Hamilton's 'law', rather 

than Hamilton's 'principle', makes possible the logical incorporation of the 

initial conditions into the varlatlonal formulation. 

6Zienklewicz, 0. C, The Finite Element Method, 3rd Edition, McGraw-Hill, 
1977, pp. 569-70. 
'Argyris, J. H., and Scharpf, D. W., "Finite Elements in Time and Space," 
Nuclear Engineering and Design, 10, 1969, 456-464. 
°Fried, I., "Finite-Element Analysis of Time-Dependent Phenomena," AIAA 
Journal, 7, No. 6, pp. 1170-1172. 



HAMILTON'S PRINCIPLE - A CONSTRAINED VARIATIONAL PRINCIPLE 

The following equation is known as the generalized principle of 

d' Aletnbert:" 
N 
I   (Fi-PiWrt = 0  ;  (*) = 3/3t (1) 

1=1 ~  ~   ~ 

This equation applies to any system of N-particles, the ith particle having a 

position r^, a momentum Pj, and subject to a resultant applied force F^. 

Under the assumption that the virtual work of the applied forces is 

derivable from a scalar V, a time Integration of equation (1) leads to 

Hamilton's law of varying action:'■'-''^ 

t2 ^ . t2 
6/     (T-V)dt   -    I    miri'8ri]"=0 (2a) 

tl 1=1       ~       "    t! 

T  is the  kinetic energy of  the  system 

N 
T - 1/2 I mirfri 

1 = 1    '    ~ 

and V is the potential energy of the forces impressed on the N-particles.  The 

existence of V makes little difference as far as numerical calculations are 

concerned.  In the event V does not exist, equation (2a) can be written: 

t2    -      N   .       t2 
/  (6T+6W)dt - I    miti   • SrJ " = 0 (2b) 
tl 1=1  ~    ~ ti 

9Mierovitch, L., Methods of Analytical Dynamics, McGraw-Hill, 1970, p. 65. 
l^Balley, C. D., "Application of Hamilton's Law of Varying Action," AIAA 
Journal, Vol. 13, No. 9, pp. 1154-1157. 
Hamilton, W. R., "Second Essay on a Gent 
Philosophical Transactions of the Royal Society of London, 1835, pp. 95-144, 

llHamilton, W. R., "Second Essay on a General Method in Dynamics, 



The bar signifies that in general the virtual work of the applied forces 

cannot be derived from any scalar function of the generalized coordinates. 

Either of equations (2) can be used as a basis for a Ritz approximation to a 

dynamics problem. 

If iriCt^) and 6ri(t2) vanish in equation (2a), the result is Hamilton's 

principle: 

6/  (T-V)dt = 0 (3) 

tl 

Since the vanishing of the displacement variations at the end points is 

not the only means by which the partial sum in equation (2a) may vanish, equa- 

tion (3) may not always represent Hamilton's principle in the strict sense. 

Should equation (3) be used as a basis for the numerical solution of a dynam- 

ics problem without the requirement that all of the 6r| vanish at t^ or t2, 

zero momentum conditions will prevail instead as natural boundary conditions 

on those displacements whose variations are free.  This aspect of variational 

principles is covered very clearly in many references (cf. ref. 12).  An 

observation to be made here is that equation (3) corresponds to a system of 

boundary va.lue problems - not Initial value problems - since the partial sum 

can only vanish through boundary (end point) constraints either natural or 

Imposed.  Thus equation (3) cannot, with complete logic, be used to formulate 

any system of Initial value problems of dynamics.  The Introduction of initial 

data has in fact always been the obstacle preventing the use of Hamilton's 

l^Courant, R., "Variational Methods for the Solution of Problems of 
Equilibrium and Vibrations," Bulletin of American Mathematical Society, 49, 
pp. 1-23. 



principle for the varlatlonal formulation of Initial value problems.1^'^ 

Since equation (3) is a valid physical statement of mechanics only when 

the boundary constraints are such that the partial sum vanishes, it is proper 

to refer to this equation as a 'constrained varlatlonal principle' as opposed 

to equations (2) which are unconstrained varlatlonal laws of mechanics, suit- 

able for the application of arbitrary constraint conditions. 

GLOBAL AND PIECEWISE RITZ APPROXIMATIONS 

Equations (2) and (3) differ only in the presence or absence of boundary 

terras.  For the case of a single particle (N=l) having only one degree of 

freedom u(t), the Ritz procedure when applied to either of equations (2) leads 

to a scalar relation of the form: 

6UT[(K-B)U-F] = 0 (4) 

whereas for equation (3): 

6UT[KU-F] = 0 (5) 

Equations (4) and (5) are assumed to derive from applying the Ritz procedure 

whereby the displacement function u(t) is approximated as: 

u(t) = aT(t)U (6) 

The relation (6) applies to the entire interval of solution when globally 

defined basis functions are used or to a particular sublnterval thereof when 

plecewlse functions (finite elements) are employed.  When a global power ser- 

ies approximation is used U is a vector of generalized coordinates, the first 

13Tiersten, H. F., "Natural Boundary and Initial Conditions From a 
Modification of Hamilton's Principle," J. of Math. Physics, Vol. 9, No. 9, 
pp. 1445-1450. 

^Gurtin, M. E., "Varlatlonal Principles for Linear Elastodynamics," Archive 
Ratl. Mech. Anal. 16, 34-50 (1964). 



two of which are identifiable as uCt^ and uCti).  The 'shape function', a(t), 

in this case is simply: 

aT(t) = [l,t,t2,...,tn]  ,  tx < t < t2 (7) 

If piecewise cubic Hermite polynomials are used instead, the components of U 

are local values of u and u defined at the endpoints of a particular subinter- 

val, and 

aT(t) = [2T3-3T2+1, h(T3-2T2+T), 3T2-2T3, h(T3-T2)]       (8) 

where T = t/h, h being the length of the particular subinterval.  Referring 

first to equation (5), it is noted that K tends to be singular of degeneracy 

one.  For certain simple problems K may compute to be exactly singular.  In 

general, however, K will only become singular in the limit as the number of 

basis functions employed in the Ritz approximation becomes infinite.  The 

degeneracy of K represents the possibility that neither uCtj) or u(t2) has 

been specified.  That is, if neither M^) or 6u(t2) vanishes, then mu  must 

vanish at both endpoints as natural boundary conditions.  Under these condi- 

tions u(t) may only be determined to within an arbitrary constant.  Thus in 

equation (5) K may only be reduced to a nonsingular matrix by specifying val- 

ues for u(ti) and/or u(t2) so that the variations of one or both of these 

quantities vanish.  The essence of the discussion which follows is not changed 

if, in the sequel, it is assumed that uCt^ has been specified.  This is known 

as a 'geometric' or 'imposed' constraint.  Because SUj = 6^^) = 0 multiplies 

the first row of K in equation (5), this row is effectively removed from the 

formulation.  Since the remaining variations are arbitrary the final set of 

equations to be solved is then: 



n 
I    KijUj = Fi - KnUi  ,  1 = 2,3...ti (9) 

J-2 

where U^ = uCt^) is the specified value and n Is the dimension of K.  Whether 

these equations derive from a global power series approximation or from one 

based on finite elements, one may readily verify that as n is increased their 

solutions do Indeed converge to the exact solution of the corresponding two 

point time-boundary value problem.  Should one wish a solution to an initial 

value problem, however, equation (4) must be used instead of equation (5).  In 

this case, specifying values for u(ti)   and u(ti) cause SUj and 6U2 to vanish 

thereby deleting the first two equations of this set.  The resulting system of 

equations to be solved is thus: 

n 
I (Kij-Bij)Uj = Fj - (Kil-Bil)U1-(Ki2-Bi2)U2  ,  1 = 3,4,...,n  (10) 

J-3 

In all cases attempted to date, solutions to equations (10) have been observed 

to converge to the exact solution if these equations are derived using a 

global power series approximation but not if they are formulated by finite 

elements.  An example of this anomaly will be given in the next section.  As 

the only difference between equations (4) and (5) is a subtraction of B in the 

former, and in as much as convergence is achieved when equation (4) derives 

from a power series approximation, one suspects that it is the finite element 

representation of the matrix B which is somehow at fault.  It is therefore of 

Interest to know in more detail just how the subtraction of B is supposed to 

affect the coefficient matrix of the system. 

In contrast to the matrix K, the matrix K-B must tend to be singular of 

degeneracy two - no constraints having been assumed a priori.  Thus when u(ti) 

8 



is specified and the first row of K-B is deleted, the regaining equations 

still must possess one degeneracy in the limit as the number of basis func- 

tions becomes infinite.  Thus the effect of subtracting B must be to free the 

natural boundary condition at t2 (inherent in equation (5)) and to introduces 

degeneracy.  This remaining degeneracy can only be removed by specifying the 

value of u(t) at a time other than tl   or a value for u, resulting in the dele- 

tion of another row of K-B. 

ANOMALOUS BEHAVIOR OF FINITE ELEMENT FORMULATIONS 

The degree to which the subtraction of the matrix B from K can both free 

the natural boundary condition at t2  and introduce a degeneracy differs with 

the type of approximation employed.  When global power series approximations 

are usec the B matrix is quite full and the subtraction affects many rows of 

K.  When locally defined Hermite polynomials are used, however, B is very 

sparse and in fact contains only two non-zero components.  Moreover, one of 

these appears in the first row of B which is deleted when u^) is specified. 

In this case freeing the natural boundary condition and introducing a degener- 

acy depends on the subtraction from a single component of K.  Even though both 

effects may actually be produced in the limit as the number of elements 

becomes Infinite, the degree to which they are approximated for any finite 

number of elements is evidently insufficient and the solutions do not converge 

to the correct result.  This is exemplified in Figure 1.  The problem repres- 

ented is that of a free oscillator of unit mass and stiffness, subject to the 

prescribed initial constraints of zero displacement and unit velocity.  For 

this case, equation (2a) reads: 



/ (u6u-u6u)dt - u6u|" = 0 
77 

I 
0 

or simply, 

/ (u+u)6udt = 0 * 
0 

(ID 

(12) 

The finite element results of Figure 1 were obtained using piecewise cubic 

Hermite polynomials.  (Higher ordered Herraite polynomials yield similar 

results.)  It is observed that the solutions tend to diminish from the exact 

solution, sin(t), as the number of elements is increased.  Using only two fin- 

ite elements the finite element matrix formulation (equation (4)) for this 

problem is as follows: 

0 = 6UT[K-B]U = [6Ui SU2 6U3 6bT4 6U5 6U6] • 

kll k12 k13 k14 0 0 

k21 k22 k23 k24 0 0 

k31 k32 k33+kll k34+k12 k13 k14 

k41 k42 k43+k21 k44+k22 k23 k24 

0 0 1^3! k32 k33 k34 

0 0 k^i k42 ^43 k44 

1  1 1 — 1 
1     1 

i  lo 
1  1 

-1 0 0 0 ol 
1 

1 Di 

1  lo 
1  1 

0 0 0 0 
1 

ol 
1 

u2 

1     lo 
1 - 1 

0 0 0 0 
1 

ol 
1 , 

1 U3 

1  lo 
j  1 

0 0 0 0 ol 
1 

1 U4 

1  lo 
1   1 

0 0 0 0 
1 

ll 
1 

1 U5 1! 
1     5 

1     lo 
1    1 

0 0 0 0 
1 

ol 
1 

1 "6 

(13) 

*Note that Eq. (12) would also result from application of the Galerkin 
procedure, implying that the Galerkin method has physical justification for 
problems in dynamics. 

10 



Using expression (8), the element matrix k is calculated in terms of the 

element length h as: 

k " / (aaT-aaT)dt = 
0 ~~  ~~ 

6   13h 1   llh2 

5h  35   10  210 

2h  h3 

9h  6   13hz   1 

70  5h 420    10 

13h2   1  h3 

15  105   420   10  140  30 

6   13h llh2  1 
- SYMM. -      

5h  35  210   10 

2h  h3 

15  105 

Since Uj^ is specified the first row of K - B is deleted.  As the subtraction 

of B only affects one row of the reduced system, the only way in which a 

degeneracy can be introduced is for the next to last row to join the space 

defined by the rows remaining.  Thus rows two through six in equation (13) 

ideally would become linearly dependent.  This dependency among rows must be 

quite general as specification of any other of the Uj_ must remove it. 

One suspects that a simple subtraction of unity from K55 in equation (13) 

may not do the best job of introducing a degeneracy or of freeing the natural 

boundary condition at ££ ■ '• One can gain some idea of how 'close' this 

subtraction brings the fifth row into the space of rows 2,3,4 and 6 by 

comparing it with its projection onto this space.  Substituting ■n/l  for h, the 

fifth row of equation (13) calculates to be: 

*A11 mathematics herein were performed using the MACSYMA (Project MAC's 
SYmbolic MAnipulation) system developed by the Mathlab Group of the MIT 
Laboratory for Computer Science. 

11 



[0.0  0.0  -0.96590326  -0.17637194  0.180505097  -0.970755175] 

whereas its projection is: 

[7.8587183E-3 -8.5978979E-3 -0.974496335 

-0.184380835  0.172642875 -0.9617834] . 

Further calculations show that if the interval of solution remains fixed and 

the number of finite elements is allowed to increase, closer agreement between 

the next to last row vector and its projection is observed but this is not 

accompanied by a convergence of the solution vector toward the exact solution 

to the problem.  While the exact reasons for this instability are not known it 

is apparent that the rate at which the next to last row tends to become depen- 

dent is important.  It stands to reason, therefore, that should one invoke the 

limit condition without actually proceeding to the limit, a convergent 

sequence may result and indeed this proves to be the case. 

Asserting that the row vectors two through six are linearly dependent 

allows the fifth row (equation) of equations (13) to be replaced by a linear 

combination of the others.  For example, let 

R5 = a2R2 + a3R3 + a4R4 + a6R6 (14) 

where Rj denotes the i^  row of K - B.  After imposing the second initial 

constraint, U2 = 1, equations (13) can be written: 

6U3R3 • 0 + 5U4R4 • U + 6U5(a2R2+a3R3+a4R4+a6R6) • U + 6U6R6 • U = 0  (15) 

Since all variations in equation (15) are arbitrary, there results the 

following system of equations for solution: 

0 = R3 • U = R2 • U = R4 • U = R6 • U (16) 

12 



Thus the second equation (row) which was originally deleted through the speci- 

fication of U2, is brought back into the formulation in place of the fifth In 

a logical and consistent manner.  Equations (16) are the same set as would 

result from following the procedure of Argyris and Scharpf.  These authors, 

however, started with Hamilton's principle which requires that 6U1 = 6U5 = 0. 

This would delete the first and fifth equations from the set.  Further speci- 

fication of U2 should then delete the second equation as well, overspecifylng 

the problem.  Argyris and Scharpf^ allow this equation to remain without jus- 

tification.  Moreover, no explanation is given as to why 6U5 should vanish as 

U5 is never specified in an initial value problem.  All of these inconsisten- 

cies derive from the fact that Hamilton's principle corresponds only to bound- 

ary value problems - never to initial value problems. 

In summary, the work of this section shows that Hamilton's law of varying 

action, unlike Hamilton's principle, is an unconstrained variational statement 

permitting the introduction of arbitrary constraints including data ordinarily 

given for initial value problems.  When piecewise Hermite cubic polynomials 

are used as a basis for a finite element formulation, the singular state of 

the resulting coefficient matrix in the limit justifies retention of the 

second equation of the system in preference to the next to last when typical 

initial values for displacement and velocity are specified.  Following this 

procedure, convergent solutions are then obtained for the problem of the free 

oscillator considered in this section.  These results are presented in Table I 

for formulations based on one, two, and six finite elements. 

'Argyris, J. H., and Scharpf, D. W., "Finite Elements in Time and Space,' 
Nuclear Engineering and Design, 10, 1969, 456-464. 

13 



TABLE I.  SOLUTIONS TO FREE OSCILLATOR PROBLEM (DISPLACEMENT/VELOCITY) 

0 <  t < IT 

6t/Tt One Element Two Elements Six Elements 
Exact 

Solution 

0 0.0* 
1.0* 

0.0* 
1.0* 

0.0* 
1.0* 

0.0 
1.0 

I 0.49978005 
0.86602547 

0.5 
0.86602541 

2 0.86564452 
0.50000025 

0.86602541 
0.5 

3 0.97817298 
2.02985945E-4 

0.99956036 
4.4572957E-7 

1.0 
0.0 

4 0.86564496 
-0.49999948 

0.86602541 
-0.5 

5 0.499780823 
-0.86602502 

0.5 
0.86602541 

,6 0.0166090783 
-1.00079414 

3.9845105E-4 
-1.00000946 

8.9120273E-7 
-0.99999999 

0.0 
-1.0 

* Imposed values. 
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APPLICATIONS 

Example 1.  Linear Oscillator Subjected to Discontinuous Forces 

A linear oscillator of unit mass and stiffness is subjected to a force 

f(t).  Two cases are considered: 

(a) f(t) = H(t-l/2) 

(b) f(t) = 5(t-l/2) 

H. and 6 are the Heaviside and Dirac functions respectively and for either of 

these cases equation (2) reads: 

t2 • • •   t2 
/  {u6u + (f(t)-u)6u}dt - u6u |  =0 (17) 

For case (a) four finite elements of equal length are used to approximate u(t) 

over the solution interval (0,2).  The element polynomial shape function is 

Hermite cubic and an element length of one half takes advantage of the specif- 

ic shape of the forcing function.  Table II compares the calculated displace- 

ments and velocities with those computed from the exact solution. 

In case (b) a discontinuity in velocity can be expected in the solution. 

As the use of cubic shape functions enforces continuity of velocity through- 

out, a better solution might be expected when linear shape functions are 

employed.  Table III compares the exact solution on the interval (0,1) with 

that obtained using ten such elements of equal length. 

The two problems considered in this example demonstrate the manner in 

which the type of element and its points of attachment (i.e., the 'nodes' or 

'grid points') may be varied to suit specified transient events. 
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TABLE II.  SOLUTION TO u + u = H(t-l/2) 

0 < t < 2.0 

Computed Exact 
t Displacement Velocity Displacement Velocity 

0.0 0.0* 1.0* 0.0 1.0 

0.5 0.47932149 0.87708716 0.47942555 0.877582565 

1.0 0.96370936 1.0199163 0.96388844 1.01972786 

1.5 1.45700388 0.91238744 1.45719267 0.91220819 

2.0 1.83836447 0.5805616 1.83856024 0.58134814 

*Imposed values. 

TABLE III.  SOLUTION TO u + u = 6(t-l/2) 

0 < t < 1 

Computed Displacement Exact Displacement 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0* 

0.1* 

0.199001664 

0.296016622 

0.390076343 

0.58007539 

0.76428335 

0.94086118 

1.10804607 

1.26416892 

1.40767112 

0.0 

0.099833416 

0.19866933 

0.295520213 

0.38941834 

0.57925896 

0.76331182 

0.93973791 

1.10677443 

1.26275246 

1.40611348 

*Imposed values. 
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Example 2.  Response of a Beam to a Moving Mass 

A. concentrated mass is assumed to move at constant velocity v along the 

length of a uniform Euler beam, simply supported at each of its ends and 

having zero displacement and velocity at t = 0.  Under suitable definitions 

for k and m, the representative equations may be written:^ 

yiv + ky + f(x,t) = 0 

y(0,t) = y"(0,t) = y(l,t) = y"(l,t) = y(x,0) = y(x,0) = 0    (18) 

The function f(x,t) consists of a sum of inertial terms: 

• — 
f(x,t) = m(y + Zvy' + g + vV") 5(x-vt) (19) 

where g denotes the gravitational constant and 6 is the Dirac function.  This 

problem is particularly interesting in that the conventional use of piecewise 

cubic shape functions to discretize the space variable only, introduces forces 

which are discontinuous functions of time into the resulting ordinary differ- 

ential equations.  These discontinuities are associated with the beam curva- 

ture load terra appearing in the expression (19).  Since the piecewise cubic 

poiynorrials are discontinuous in the second derivative at the element attach- 

ments, the terra mv y"6(x-vt) - when multiplied by the shape function a(x) and 

integrated over the element length - will produce functions of time which are 

discontinuous whenever the moving mass arrives at any point of attachment. 

Clearly these discontinuities have nothing to do with the physics of the prob- 

lem and are certain to invite trouble when one attempts to numerically inte- 

l^simklns, T. E. , "Unconstrained Variational Statements for Initial and 
Boundary-Value Problems," AIAA Journal, Vol. 16, No. 6, June 1978, pp. 
559-563. 
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grate the time dependent equations via established algorithms.  It is possi- 

ble, of course, to use shape functions of higher degree to discretlze the 

space variable thus eliminating the discontinuities at the onset but this is 

hardly consistent with the finite element method which should permit the use 

of even linear shape functions if need be.  One is tempted to somehow 

'smooth' these discontinuities, yet this should not be done in a purely 

arbitrary fashion.  Integrating the effects of these forces throughout the 

time domain through the use of Hamilton's law of varying action provides a 

consistent way to handle this problem. 

While it is possible to handle the space and time finite element 

discretizations in one operation, the amount of computation and computer 

programming tend to become inordinately large.  Moreover, there exist any 

number of finite element codes (e.g. NA.STRAN) which can quickly accomplish 

much of the space discretization.  It seems more efficient, therefore, to 

apply the finite element method in two steps, by first discretizing the space 

variable and then applying Hamilton's law to the resulting system of ordinary 

differential equations in time.  For the case at hand, the differential 

equations governing the motion of the i1-"1 beam element turn out to be: 

(p + mci)u + mc2U + (q + mc3)u + mga(vt)= 0 (20) 

p and q are proportional to the usual mass and stiffness matrices for beam 

elements and have been evaluated many times in the literature.  Here all of 

the beam elements are of the same length i,  and the displacement within the 

i" element is interpolated from ui(t), a vector of end point displacements 

and velocities, i.e.. 



y(x,t) = aTU^uiCt) 

0 < S1 < 1 (21) 

where ^(x) = x/£ - (i-1) , a nondimenslonal element coordinate. 

The c matrices in equations (20) correspond to transverse, Coriolis, and- 

centrifugal accelerations respectively and are defined for the ilh element as 

follows: 

c! = aCC1) aT^lx-vt 

cj = ZvaC^^a'TC^^Ix-vt (22> 

C3 = M2&^i)anTk±)\ypK9t 

It   is  noted  that   C3 will   be  discontinuous  at  C1 " 0  and  ^i  =  I.     The   function 

m takes on the value  of m only when the concentrated mass  lies within the  i 

element,   otherwise m  is  zero. 

The element equations (20) are combined in the usual way to form N equa- 

tions of motion for the combined  structure.     Symbolically: 

M(t)U + C(t)U + K(t)U = F(t) (23) 

Each of the matrices  in equation  (23)  can be viewed as a conventional matrix 

of   constant   coefficients  plus  a time variant   set   of  components which are 

active   in a band  along  its main diagonal  as the moving mass traverses the  beam 

in time.     For this  system of  equations Hamilton's law of varying action can be 

written: 

N       N       t2     . • • • *     t2   1 
I       I  {/     UUiMijU-j + SUiKMij-CipUj-KijUj + FiJldt  -  611^^1     }   = 0     (24) 

1-1   j-1     ti tl 
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It is interesting to observe the accuracy of solution which can be 

obtained from equation (24) using only two finite elements in space and two in 

time.  A formulation using two elements in space results in a system of N=4 

ordinary differential equations in time once the geometric support constraints 

have been applied.  A. two element formulation of these four equations for the 

time domain, followed by the application of all initial constraints in the 

manner summarized in Section 5, gives a final system of sixteen linear 

algebraic equations for solution.  Figure 2 compares this solution with the 

experimental results of Ayre, Jacobsen, and Hsu^" and a conventional finite 

element solution using three elements in the space domain followed by a 

time-integration of the equations (28) by Hamming's predictor-corrector 

algorithm.^ The mass velocity in this case is v = v*/2)   v* being the 

lowest velocity to cause resonance when the load is a moving weight only and 

the magnitude assigned to the moving mass is 25% of the total mass of the 

beam.  (Other parametric values are the same as those in reference 16.)  The 

displacements have been normalized with respect to the maximum deflection 

produced if the weight was applied statically at midspan and L is the total 

beam length.  In particular one notes that the conventional solution obtained 

via three finite elements in space only, produces non-physical discontinuities 

in the slope of the solution curve at vt/L = 1/3, 2/3.  (The continuous data 

l"Ayre, R. S., Jacobsen, L. S., and Hsu, C. S., "Transverse Vibration of One 
and of Two Space Beams Under the Action of a Moving Mass Load," Proceedings 
of First National Congress on Applied Mechanics, June 1951. 

^■'Ralston and Wilf, Mathematical Methods for Digital Computers, Wiley and 
Sons, NY, London, 1960, pp. 95-109. 
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for generating this curve Is obtained by interpolating the solution to 

equation (23) using equation (21).)  No discontinuities of this sort can arise 

when finite elements in space and time are employed.  Improved agreement with 

the experimental results is also observed. 
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